

Contaminated Sediments

Confounding Factors (CF)
In Toxicology

Dr. Jack Q. Word – Battelle 360-681-3668

Introduction

- Purpose: RPMs will leave this session understanding that...
 - Confounding Factors (CFs) are sediment features that cause toxicity, but they are not COPECs
 - CFs create unnecessary costs to sediment remediation programs
 - CFs can be addressed in an acceptable regulatory framework

Introduction (cont.)

- RPMs will also leave understanding that...
 - Sediment chemistry can exceed accepted ARARs without having an unacceptable adverse biological effect – BIOAVAILABILITY ISSUE
 - Unacceptable adverse biological effects can occur that are not related to COPECs – CF ISSUE
 - Appropriately conducted bioassays are a good thing

- Historical review
- Screening process
- Acute toxicity testing
- Bioaccumulation testing

HISTORICAL REVIEW:

 COPECs are identified through evaluation of past history at a site

SCREENING PROCESS:

 Comparison to Benchmark Sediment Criteria or Advisory Concentrations

ACUTE TOXICITY TESTING:

COPECs become COCs if an unacceptable adverse biological effect occurs as a result of exposure to the COPEC at greater than trace quantity

BIOACCUMULATION TESTING

- Bioaccumulation evaluation addresses bioavailability
- Relative Absorption Factor (RAF) < 1</p>

Confounding Factors?

- CFs Interfere with the Evaluation of COPEC TO COC
 - CFs are sediment factors that produce unacceptable conditions for test organisms, but are not:
 - chemicals of concern
 - factors that control legal decisions

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

Value Added by Addressing CFs

Value Added by Addressing CFs

- Provide examples of chemical-specific sediment ARARs
 - Cleanup goals: Match these ARARs
- Oakland example
 - Screening factor definitions and relationships to ARARs
 - Decisions on screening factors from CF and bioavailability assessments

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

Oaklandexample ofadded value

Oakland Example of Added Value ARAR List

- ERL, ERM, MS/OBM Reference Screening Values, AET, Wetland Concentrations for Non-Cover and Cover, Reference Area Wetland Screening Values
 - All values used during Oakland evaluation were demonstrated to be protective of the environment

- Oakland Background
 - 50-ft deepening project
 - same as San Diego carrier deepening project
 - 14 to 20 million cubic yard program
 - Potential beneficial use

Oakland Example Alternative Sampling Equipment

Oakland Example Alternative Sampling Equipment

Screening Factors (SFs) and Expected Sediment Volumes

```
SF1 4 core comp/200,000 cy
SF2 4 core comp/100,000 cy
SF3 4 core comp/50,000 cy
O.3 M cy
```

- Expected Conditions of Sediment with SF1 Characteristics
 - SF1 WILL exceed ERM screening criteria; and WILL have elevated mortality due to sediment compactness, low water content, low organic carbon content, CFs, and little to no bioaccumulation of COCs

- Expected Conditions of Sediment with SF2 Characteristics
 - SF2 MAY exceed ERM screening criteria; MAY have elevated mortality due to CF or COCs; MAY have CF associated with poor organic carbon, ammonia, sulfides; and MAY have bioaccumulation of COCs

- Expected Conditions of Sediment with SF3
 Characteristics
 - SF3 WILL exceed ERM screening criteria; and WILL have elevated mortality due to CF and COCs. MAY have CF associated with poor organic carbon, ammonia, sulfides. LIKELY to bioaccumulate COCs

- Projected Outcome of Decisions by Resource Agencies
 Without CF Being Adddressed
 - SF1 sediment rejected due to exceedences of ERM values and unexplained mortality resulting from lack of food and compact sediment (9.0 M cy)
 - SF2 sediment rejected due to exceedences of ERM values and mortality resulting from CF of ammonia, sulfide and TOC quality in addition to COCs (5.1 M cy)
 - SF3 sediment rejected due to all factors (0.3 M cy)

Oakland Example of Added Value Relative Cost of Treating Soils/Cubic Yard

Relative Cost of Treating Soils After Addressing CF with Agencies

- Cost of sediment treatment assuming same procedure applied to all sites without CFs being addressed
 - 14.4M cy * \$100/cy = \$1.44B
- Cost of sediment handling assuming procedure applied to all sites after CFs were addressed
 - 0.1M cy * \$100/cy = \$10M.
 Or <0.1% of potential cost

Relative Cost of Treating Soils After Addressing CF with Agencies

Potential Port of Oakland Sediment Remediation Costs

- Total Cost Without CF = \$1.44B
- Cost with CF = \$10m

- Results of the Application of Methods to Address CFs
 - Project moved forward
 - Agencies backed decisions and supported solutions
 - Reduction in costs to complete project because only unacceptable biological effects due to persistent COCs at greater than trace quantities controlled decisions

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

RegulatoryStance forAddressingCFs

Regulatory Stance for Addressing CFs

- List of laws
- CFs are those sediment features which are
 - Not COPCs
 - Not at higher than trace concentrations
 - Not persistent

Regulatory Stance for Addressing CFs Effectiveness Of Toxicity Testing

Toxicity testing has been highly successful in the past, resulting in numerous laws and procedures for evaluating toxicity.

- Rivers and Harbors Act (1899)
- Oslo Convention (1972)
- London Dumping Convention (1975)
- Bonn Agreement (1969)
- Marpol Convention (1973/1978)
- Clean Water Act
- Federal Water Pollution Control Act
- Water Quality Act
- Toxic Substances Control Act (TSCA) (1976)
- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) (1975)

- The Marine Protection, Resources, and Sanctuaries Acts (MPRSA) (1972)
- Comprehensive Environmental Response,
 Compensation, and Liability
 Act/Superfund Amendments and
 Reauthorization Act (CERCLA/SARA)
- Resources Conservation and Recovery Act (RCRA)
- National Environmental Policy Act (1969)
- Environmental Quality Improvement Act (EQIA) (1970)

Regulatory Stance for Addressing CFs Appropriate Toxicology Tests

- Laws agree that they are designed to protect the environment from unacceptable adverse impacts of persistent, chemical contaminants of concern at greater than trace quantities
 - Persistent
 - Chemical contaminants of concern
 - Trace
- Biological tests override chemical-based criteria

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

Types of Confounding Factors

- Non-Persistent Contaminants
 - Ammonia
 - Salinity
 - Sulfides
 - Organic carbon quality
 - Water hardness/alkalinity
 - pH
 - Temperature
 - Suspended solids

Types of Confounding Factors

- Persistent Sediment Features
 - Sediment grain size
 - Total organic carbon quantity
 - Heavy metals associated with mineral fraction of the sediment
 - Sediment compactness
 - Sediment water content

Types of Confounding Factors

- Laboratory Differences
 - Interpopulation sensitivity
 - Interlaboratory comparisons
 - Intralaboratory comparisons

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

Ammonia example

AMMONIA – non-persistent CF Where has it been a problem?

- San Francisco Bay, California
 - Oakland and Richmond Harbors
 - John F. Baldwin Ship Channel
 - Mare Island Straits
 - San Raphael across the flats
 - Treasure Island

- New York Harbor
- Charleston, South Carolina
- Puget Sound, Washington
- Aquarium Stores

- Tropical fish stores face similar problems with ammonia
- If a tropical fish store handled their expensive fish the way we do toxicity testing they would go out of business
- Don't we owe it to our programs to be at least as careful with our bioassays, whose results control millions of dollars worth of sediment remediation costs?

EC50 CONCENTRATIONS

Ammonia Example What This Means

- The tropical fish store had an obvious answer. Address the issue of the non-persistent CF, ammonia, or go out of business.
- The examples of ammonia and other CFs being addressed indicated a savings of >99% in Oakland Harbor
- The examples of CFs at Treasure Island indicated that they were created by laboratory artifact

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

How to Successfully Address CF Issues

- Ask yourselves the questions that follow.
- Follow the critical steps for successfully addressing CF issues with regulatory agencies.

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

- Is the sediment in an area of freshwater influence?
- Is a source of recent organic enrichment present?
- Is the assessment addressing sediment that is buried deeper than 10 cm?
- Is the assessment addressing older and more compact sediment?
- What is the sediment grain size?
- Are there sharp angles on sediment grains?
- Is the heavy metal content of the sediment determined by a complete digestion method?
- Is the assessment evaluating COCs in place?
- Is the assessment evaluating the effects of COCs during removal?
- Is the assessment evaluating COCs during disposal or placement of sediment at another site?
- What was the survival of the test organisms prior to conduct of the test?
- What test conditions were applied to the test?
- Who provided test organisms?
- What was the acclimation schedule for the test organisms prior to test?

- Is the sediment in an area of freshwater influence?
 - If so, the CFs influencing organism survival are:
 - Low salinity
 - Increased ammonia with longer tests being more influenced

- Is a source of recent organic enrichment present?
 - If yes, then the CFs to address are:
 - Total organic carbon quantity
 - Total organic carbon quality
 - Ammonia and sulfide toxicity
 - If no, then the CFs to address are:
 - Lack of food quantity and/or quality

- Is the assessment addressing sediment that is buried deeper than 10 cm?
 - If yes, then the CFs to address are:
 - Ammonia and sulfide toxicity as well as sediment compactness and water content
 - If no, then the CF's to address are:
 - Potential predators in unsieved sediment samples

- Is the assessment addressing older and more compact sediment?
 - If yes, then the CFs to assess are:
 - Ability of test organisms to burrow into sediment
 - Lack of water in compacted sediment
 - Lack of quality organic material
 - Potential ammonia or sulfide issues

- What is the sediment grain size?
 - The CF that should be addressed here is:
 - Is the grain size appropriate for the test species?
 - Can the influence of grain size on toxicity be accounted for?

- Are there sharp angles on sediment grains?
 - If yes, the CF that needs to be addressed is:
 - Injury to soft tissue organisms that burrow through sedimentselect species that are composed of harder exoskeletons or which do not burrow through sediment

- Is the heavy metal content of the sediment determined by a complete digestion method?
 - If yes, the CF to address is the bioavailability of the metals in the sediment sample

- Is the assessment evaluating COCs in place?
 - If yes, the CF that needs to be addressed is:
 - Species selection the species should be a good surrogate for species that live in the vicinity of the sediment. Do not match the sediment to the species, match the species to the environmental types

- Is the assessment evaluating the effects of COCs during removal?
 - If yes, the CF that needs to be addressed is:
 - Species selection is the species a good and appropriate surrogate species for the environmental conditions at the removal site? Match the species selection to the environmental conditions at the site

- Is the assessment evaluating COCs during disposal or placement of sediment at another site?
 - If yes, the CF that needs to be addressed is:
 - Species selection is the species a good and appropriate surrogate species for the environmental conditions at the disposal site? Match the species selection to the environmental conditions at the site

- What was the survival of the test organisms prior to conduct of the test?
 - If the survival of the test organisms prior to the test was low, then the test organisms are likely to be too sensitive and excess toxicity will result

- What test conditions were applied to the test?
 - If the organisms were tested in conditions outside of their normal use then they will be more sensitive and have higher mortality

- Who provided test organisms?
 - The CFs associated with this question are:
 - Handling issues and increased sensitivity
 - Population sensitivity differences within the same species but collected from different areas

- What was the acclimation schedule for the test organisms prior to test?
 - Too abrupt changes in water conditions can increase sensitivity of test populations

Topics of Discussion

- Value Added by Addressing CFs
 - Oakland example of added value
- Regulatory Stance for Addressing CFs
- Types of CFs
 - Ammonia example
- How to Successfully Address CF Issues
 - Questions RPMs can ask
 - Critical steps to addressing CFs with agencies

Critical stepsto addressingCFs withagencies

Critical Steps to Addressing CFs with Agencies

 There are successful procedures for addressing CF issues with agency personnel

Critical Steps to Addressing CFs with Agencies

- Determine the specific question that is being addressed
- Identify the most likely CFs
- Before sampling occurs, address the methods for assessment of CF influences
- Develop sampling and analysis plans to address CFs with agency participation

Critical Steps to Addressing CFs with Agencies

- Obtain interpretation framework agreement with agencies
- Perform tests, follow interpretation framework guidelines, and present results to resource agencies
- Do not try and explain away CF influences without sitespecific supporting studies

Contaminant Availability Factors

Sediment Disturbance

<u>Storage</u>

Alters Bioavailability

Increasing Disturbance

Confounding Factors

Testing Options to Account for Factors Under 3 Assessment Types Contaminant Disposal **Availability** In-Situ Removal **Factors** Organism Exposure Sediment Minimize Maximize Maximize Disturbance Storage Minimize Minimize Minimize Confounding **Factors** S °/... Select Species whose Select Species whose Select Species whose Tolerances Match Tolerances Match **TOC Quantity** Tolerances Match Conditions of In-Situ Conditions Disposal Environment Grain Size Removal Site Ex pected Observed NH: Sulfide Added Factors OR Concentration Disturbance Disturbance Overlying Water Acceptable Acceptable Exchange or Wait Assess Potential for Factor to Influence Test Results TOC - Quality (Quantity / Quality Synergism) Expected Survival Grain Size Added Factors Observed Concentration.

Testing Options to Account for Factors Under Three Assessment Types

Conclusions

- Sediment has been classified as toxic due to CFs. This is an expensive and inappropriate answer and would bankrupt a normal business.
- Sediment that has COCs greater than guidance values but with little bioavailability can be classified as an acceptable risk through appropriately conducted toxicity tests. (*Biological overrides to* sediment screening values)

Conclusions

- Agency personnel will accept results of CF and bioavailability evaluations
- Agency personnel will appropriately classify sediment as acceptable
- Remember the Oakland example. Costs for remediation were reduced to less than 1% of the potential costs after CFs were addressed.

References

- Drake, E. 1997. "Phytoremediation of Aged Petroleum Hydrocarbons in Soil." Proceedings of the IBC Phytoremediation Conference, June 18-19, 1997. Seattle, WA.
- NRC. 1997. Contaminated Sediments in Ports and Waterways. National Research Council, Washington, DC.

Point of Contact

- Karen Miller
 - Phone: (805) 982-1010, DSN 551-1010
 - Fax: (805) 982-4304, DSN 551-4304
 - E-mail: kmiller@nfesc.navy.mil

Or

Your Local TSR